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* ABSTRACT

-> For a genuinely nonlinear hyperbolic system of conservation laws with

added artificial viscosity, - f() x - CX we prove that traveling wave

profiles for small amplitude extreme shocks (the slowest and fastest) are

linearly stable to perturbations in initial data chosen from certain spaces

with weighted norml i.e., we show that the spectrum of the linearized equation

lies strictly in the left half plane, except for a simple eigenvalue at the

origin (due to phase translations of the profile). The weight -eR$is used

in components transverse to the profile, where, for an extreme shock, the

linearized equation is dominated by unidirectional convection.
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oiGUI*CANCI AND IMANA'" ..

Many equations of mathematial physics take the form of nonlinear systems
of conservation laws. Mathematically, this type of system is difficult to

... deal withl generally, smooth solutions must develop discontinuities (shocks)
in finite timer thus weak (i.e., nondifferentiable) solutions must be aditted
at the price of losing uniquenesss given initial data may be continued forward
in several ways in the class of weak solutions. An extra criterion, called
the entropy criterion (from the fact that solutions in physics have increasing
entropy) is imposed on the solution in hopes of recovering uniqueness. One
method of justifying the entropy criterion is to show that if parabolic
dissipation terms (e.g., viscosity), generally neglected, are taken into
account, and if a solution to the inviscid system is obtained as a limit of

"I solutions as the viscosity vanishes, then this solution must satisfy the
entropy condition.

Are all "entropy solutions" the limit of solutions of the viscous
system? So far, this question has been answered only for scalar equations,
for smooth solutions, and for simple weak solutions, namely steady shock
waves. Thus a steady shock satisfying the entropy condition is the limit of
smooth *shock profiles", which are travelling wave solutions of the associated
parabolic system.

"nsofar as the incorporation of viscosity into the system yields a more
accurate physical model, shock profiles become interesting in their own
right. More generally, travelling waves of parabolic systems arise in other
important contexts, such as nerve Impulses and fronts for reaction-diffusion
systems. This paper is concerned with the stability of shock profiles with
respect to perturbation, with fixed viscosity of a simple but nonphysical
type. As opposed to the situation for a single equation, stability results
for traveling waves of nonlinear parabolic systems are few and far between.
However, Do lattinger has established a linearized stability criterion (one

. based on spectral analysis) for such waves, which can insure nonlinear
stability up to phase shift. Our result is to verify this criterion for a
certain class of perturbations for the slowest and fastest families of shock
profiles of small amplitude. Unfortunately, the class of perturbations we can
allow cannot be treated by Sattinger's methods, so the nonlinear stability
question remains open.

The responsibility for the waording and views expressed in this descriptive
sumary lies with NBC, and not with the author of this report.
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LINEARIZED STABILITY OF EXTREME SHOCK PROFILES FOR
SYSTEMS OF CONSERVATION LAWS WITH VISCOSITY*

Robert L. Pego

0 1. Introduction
In this paper we demonstrate the stability, in a linearized sense, of

viscous shock profiles for small amplitude extreme shock waves of a hyperbolic

system of conservation laws.

ut + f(u) x  0 , u (1.1)

The shock profiles are travelling wave solutions of an associated parabolic

system obtained by adding "artificial viscosity",

ut + f(u)x q PUxx (1.2)

For P > 0 fixed, we exhibit a class of perturbations, determined by a

weighted norm, with respect to which the profiles satisfy a linearized

stability criterion put forth by Sattinger (1976).

We assume that the system (1.1) is strictly hyperbolic, so that the

matrix df(u) has m distinct real eigenvalues

(u) < ... < A m(u)

with corresponding right and left eigenvectors rk(u), tk(u) for k - I

to a, with Ii * rj = 6ij. A k-shock for the system (1.1) is a two-valued

weak solution

*u x~st

u(xt) - x<st (1.3)
uR  x > at

*This paper is part of the author's doctoral dissertation, written under the
direction of Professor Andrew 3. Majda, at the University of California,

Berkeley.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

This material is based upon work supported by the National Science Foundation
under Grant No. MCS-7927062, Nod. 2.
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where u a end UR must satisfy the Rankine-Hugoniot jump conditions

f(%) - f( - s(uCUR)- 0

and the strict entropy inequalities

)k (uL) > a > '-uk
* 5' Ak+l'uR) > a "

Here Ck(u) in assumed to be genuinely nonlinear, that Is V) erk(U) 0 0.

We normalize rk so that Vkkerk(u) I 1. With uR  fixed, a one

parameter family of k-shocks exists, with uL - u (C) and

s X k(uR) + 1/2 C for e > 0 small, satisfying

uk(0) R' ) rk UR)

An elegant proof of this fact may be found in Conlon (1980 ). Also see

Lax(1957).

A viscous shock profile for a given k-shock (1.3) is a smooth traveling

wave solution *((x-st)/u) of the system (1.2) such that #(C) + uL  as

+4-n, *([) * uR as ++ The profile () is a solution of a

system of ODHs,

j i t r- f - f(U R ) - 5(4-uR)

joining the two rest point UR and uL . in the present situation,

roy (1964) proved that shock profiles 1; ) exist

for small amplitude k-shocks (with s a k(UR) + %E) His proof gives

an asymptotic description of the profile as c 0, showing that to

second order in e, the profile matches a properly scaled hyperbolic

tangent profile for the scalar Burgers' equation, ut+uux a Ux,

along the eigenvector rk(UR).

We are concerned with the asymptotic stability of the solution

*((x-st)/u; e) to perturbations in the initial data for a fixed u > 0.

-2-

- -- - ; - .- . . .. *. -. .. .... .. . .-. .. ....... - . . . . . . . . . ." . . .*; _, ,;.l.T.,",".. "*. 5 .. *. .5 " . 5. . . .* .. . . . . . . . . . . . . .. .



Introduce the traveling coordinate E - (x-st)/u and scale t by t'

t/M. Then (1.1) becomes
U r

Ut  u - (df(u) - s)u (1.4)

The profile *(E;c) is a stationary solution of this equation. But

so is *( y; c) for any phase shift y. The best sort of stability one c~n

expect in this situation is so-called orbital asymptotic stability,

which means that initial data of the form u(C,o) - # () + u0 (Q)

yields decay of the form

u(,t - W(+Y) -1 0 as t -

for some phase shift y, if uO is small.

The approach we follow is to examine the linearized stability

of the profile #. Writing u(E,t) a #(E) + v(E,t), the perturbation v

: "satisfies a nonlinear evolution equation

vt -  (v) . (1.5)

Linearizing this equation at v - 0 (taking a formal Gateaux derivative)

we get

vt a Z IV

a v Et;- (df(f) - s)v ;- (d2f(*)*;)v (1.6)

Typically, if one can show that the spectrum of t' is contained strictly

in the left half plane, so solutions of the linearized equation decay
exponentially, then one can show that small solutions of the nonlinear

equation also decay exponentially.

However, because the phase of the profile # can be shifted an arbitrary

---amount, the derivative i Es a null function fort', so 0 is in the

spectrum of 11. This situation is typical for traveling waves in

general, which arise in many contexts (e.g., nerve impulses, traveling

-3-

S 4. . . . . . . . . . . . . . . . . . . . . ..7.. .. . . . . ... ... -



fronts for reaction-diffusion systems). In a broad setting, Sattinger

(1976) showed nevertheless that if 0 is a simple elgenvalue of ', and

if the rest of the spectrum of X' on a suitable function space is con-

tained strictly in the left half plane, then indeed one obtains orbital

asymptotic stability for the traveling wave 0 with exponential adjust-

ment. Actually, he required in addition that the resolvent (-t')"

satisfy a certain asymptotic estimate. In our Appendix we show that

this estimate is automatically valid for the systems he considers.

An important feature of Sattinger's analysis is the use of spatially

weighted norms for function spaces to "push" the essential spectrum (the

spectrum aside from isolated points of finite multiplicity) oft£' to

the left. It may be verified, in fact, that the essential spectrum of

our X' from (1.6) on unweighted LP spaces includes the origin (see the

treatment of the essential spectrum in Henry (1981), appendix to Chapter

5). Our main result is to exhibit, for e sufficiently small and k - 1

or m, a weighted space on which X' satisfies Sattinger's linearized

stability criteria. Unfortunately, our result does not immediately

yield nonlinear stability by Sattinger's theorem, for our weight fails

to satisfy two of Sattinger's hypotheses. In particular, (a) the weight

4. is not a scalar function, and (b) it is not bounded below in some com-

ponents, so the nonlinear terms in (1.5) may fail to be continuous on

the weighted space. (In a supplement, we describe the spectrum on

unweighted spaces.)

Our main result only applies to the extreme shock profiles, for

which k - 1 or m. Our approach is to try to decouple, to second order

in c, the part of the linearized equation (1.6) along rk(uR) from the

components along rj(uR), j # k. Because of Foy's result, the part along

rk consists mainly of Burgers' equation linearized about its scalar

-4-
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profile (1 - tanh lix). For that equation the weight (cosh 'ix) is

standard. The components along rj for J 0 k are dominated as c . 0

by convective terms -(A J- Ak)v . For an extreme shock these terms

convect in the same direction. Then these components my all be weighted

the same to achieve exponential decay, which improves as c -. 0 and

permits the elimination of nonvanishing "cross-terms" coupling the rk
and r j components together.

Let us now state our main result for 1-shock profiles (m-shock

profiles may be treated by space reversal, x * -x). By a linear change

of coordinates, we may assume

~df~uR) - dtag (XlCuR),..., Ymud).

We introduce the following spaces of functions with weighted norms:

For c 0 0, 14 p < -, define

(LP)c - fu: Rj1 ml ulcosh cxe LP, uiecxe Lp, j - 2...&m

with norm

Hull - max 1 lulcosh cx, j,Up ,c cxliX -2..,

Define (C )m and II I1 similarly, where C is the space of boundedu c Wc u
uniformly continuous functions on IR under the sup norm.

Theorem 1.1: Fix uR e R and suppose xi(u) is genuinely nonlinear.

Consider the linearized equation (1.6), vt a£'v, for the evolution of

perturbations of the 1-shock profile *(f;). Fix c, 0 < c < . Then

there exists 0, 0 < B < c(l-c) such that if c is sufficiently small,

-5-
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the spectrum of ' on any of the spaces (P) , 1 p < , or (Cu)m

consists of a simple isolated elgenvalue at the origin and a part which

lies in a sector strictly contained in the left half plane,

sa(- : - A{; G C IRe(A + 4c 20(.< -(cos a)IA + 421l

where a depends on e, 0 < a < w/2.

12. Scaling and Transformation

The first steps in our proof will be: (a) to scale the variables

with e, using Foy's result on the asymptotic shape of the profile (f;c)

as e . 0, so that the part of (1.6) corresponding to the linearized

Burgers' equation appears invariant of e as -* 0; (b) to transform

the scaled equation by introducing appropriate weight functions. Theorem

-1.1 will thereby be reduced to an equivalent statement (Theorem 2.1) con-

cerned with the spectrum of the scaled and transformed operator on an

unweighted space.

Without loss of generality, assume that uR a 0 a f(uR). Let us

recall Foy's asymptotic description of the 1-shock profile: For c > 0

sufficiently small,

* *(ft;c) u "M'(hic; 0)

where *(x;c) has the form

*(x;c) - *B(x)r (O) + cC(x;c)

Bwhere B(x) 1 - tanh 'ix and sup t4(x;c)1 ( C independent of c.
x

(This estimate may be read out of Foy's proof with a little care.)

-6-
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Consider the terms in Eq. (1.6). By Taylor's theorem,

-df(()) - df(O) + d2f(O)#(f) + t) 2(t)

d 2f(ft)) d 2f(O)* E + S(0(4*~~ E ,

where

R(;) f (l-t) d3f (t*( )) dt

1

S(M f d'f(tf(E)) dt

0

R(F) and S(E) are bounded in t[, and for each t represent a trilinear map

taking a vector triple to a vector. The equality

(R*2)~ E o

holds, where each side is a matrix.

Let us now introduce the following scaled variables (which, despite

appearances, haye nothing to do with the original ones):

x- E&, t'- c=t , and hru a v

Th2n

t "Tutt v& T Ux ' and v T Uxx

so (1.6) becomes

ut-CU -+ d f*(x)+aJi(x/rc)(x)2] u

-[d2f * (X) + heg ,/hC)*(y'I" (x u . (2.1)

.- 7-
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* t%

Here the derivatives df and d2f are evaluated at 0 (-UR). Define the

C00 .following matrix-valued functions:

F:: R(x) * d2f ;(x) + §(x/ C) ,(x) 2

S(x) a d2f x(x) + JS(x( h) *(X)x(x)

Note that Rx = S, and R(x;c), S(x;c) are uniformly bounded independent

of c. We also define the matrix A * (al) by

A = d2f(O)r1 (O) , so a i t L1.d2f(rl,r3 )

It is true that a' = VX1.r1 (O) - l(See Lax, 1957). Now (2.1) may be

written in a slightly more coherent form:

"'U =U - [(df-s)/hc + ,B(x)A + cR(x) ux _ [.(x)A + cRx(x)] u
S(2.2)

Observe that df-s = diag ((X1-s)/hc, i a 1,...,m) and that (A,-s)/hc

. -1 by definition. Let us write (2.2) in a convenient block form.

Write

u mt
u • • where a " (u20...U )

Relative to this decomposition, also write

-1 0 1R
.4it •A A •]R(x) J.-. 0 A/ a A R

where A is a diagonal matrix with positive entries X2-, ,-S

In block form, then, Eq. (2.2) is written

-8-
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= [L I MI(ul) 23

where the matrix entries are operators defined by

-* LB"1 - £[Ru1]x M = [(,Ba: +

Mul [(,Ba,+cR lu]x , LT [(BA +

and the important operators LB and LT are defined by

LBu * (1- - B(Xu

L U - (A/J e)G x

This completes the appropriate scaling of the variables as £ 0.

The operator LB is the operator that would be obtained by linearizing

Burgers' equation ut+uux a Uxx about the traveling wave solution

* (x-t) in traveling coordinates. It is well known (Peletier, 1971;

Sattinger, 1976) that considered on a weighted function space with

weight w(x) = cosh Jx, the operator LB satisfies the linearized stability

criteria we are concerned with. (Briefly, the idea is that consideration

of LB on the weighted space is equivalent to consideration of the trans-

formed operator wL Bw" on an unweighted space.) Roughly, what we would
i,

like to show,using arguments from perturbation theory for linear operators,

is that LB "dominates' the first component of 1' and the other components

only "contribute" spectrum strictly in the left half plane.

Two observations are of primary importance: First, in general a' f 0,

so the first component of £' apparently cannot be considered a "small"

-9-
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perturbation of L Second, observe that each component of the diagonal

operator LT consists of just the Laplacian plus a translational term.

The time evolution for this operator yields, in each component, solu-

tions of the heat equation in a frame moving at constant velocity. No

weight which is bounded below can yield exponential decay rates for such

solutions (which are necessary if the spectrum of LT is to lie strictly

in the left half plane), fortheydecay to zero only algebraically in

sup norm. Howeverlneach component the solutions are being transported

in the same direction at increasingly high velocity as e * 0 (since we

are considering an extreme shock). Thus one may expect that if we use

a weight ecx decaying in the direction of translation, we would obtain

exponential decay for solutions of ut = LTu at a rate which improves

as £ P 0. This should mean that the spectrum of LT moves further to

the left as E -1 0, so that for ) fixed, one expects the resolvent

(-LT) to decay in norm as c- 0. Then the resolvent equation

-')u- f might be solved as if it were diagonally dominant, regard-

less of the coupling terms.

The discussion above completely describes our procedure, and moti-

vates the following transformation: Fix c > 0, and in the block form

used above, define the matrix weight

[cosh cx 0~x[c 0o ]
Wclx) - 0.X

Introduce the new dependent variable z - WcU. Then the equation ut =

Z'u is transformed into

-10-
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"I! ,  z t Zz = W~c Wc-'Z

- 1
W ccL 1c wl

* C I
- x z (2.4)

[ecx1W c e Le j i

where w (x) = cosh cx.

In this way, consideration of the spectrum of the original X, on
the space (LP)c is equivalent to consideration of the spectrum of

c
-c on the unweighted space (LP)m except for a scaling factor. To

verify the scaling, consider the following equivalent formulations of

the resolvent equation:

,? (X- )z - x)n

:5 (X- '), - gx) in (LP)

C 0

SU. f g, and multiply by W-1 to obtain

(A - -')u -g(x) in ( LP),

Now set v(f) h- ) hu(k(L). To verify the scaling, compute formally

'C #VE a " C ux

* t I t T

So, multiplying by 0/8 we obtain

( AC2A _ C ')V a h(&) in (L P)m

si c W*'c)() LP) Therefore, A is in the resolvent set of C

on (Lp)  i f and only if hC 2A is in the resolvent set of.t, on (LP)m

Hence Theorem 1.1 is equivalent to:

r
I; -11-

F



Theorem 2.1: Fix c, 0 < c <. Then there exists 0 < S < c(1-c),

such that if c is sufficiently small, then the spectrum of Z on (LP)m
c 0'

1 < p < -, or (Cu )m, consists of a simple isolated eigenvalue at the
4.u 0'

origin and a part which lies in the sector

S IA 9 I e(X+) 4 -(cos a)lX+I 0

strictly contained in the left half plane, where a may depend on E,

with 0 < a < 7r/2.

The proof of this theorem has three main parts:

(1) Resolvent estimates for the operators wcLBwc1 and e'CxLTecx.

(2) Verification that the first order operator wcMlecx has uniformly

bounded coefficients. It suffices to show that

sup I*(x;£)e 2cx1 < C independent of E.
x

This yields the strict requirement c < .

* (3) Solution of the resolvent equation fort' by block Gaussian elimi-c
nation.

In the next two sections we treat (1). The estimate for LT, Improv-

ing as c s 0, is the key to the success of (3).- Since LT is diagonal,

it suffices to treat a scalar operator uxx- 2pux, as j . -. Our discus-

* . sion of L parallels Sattinger's treatment (1976) of the general scalar

equation. The argument for (2) in 55 consists of observing that the

exponential decay obtained in a standard proof of the stable manifold

theorem holds independent of £ as * o0. (4(x;c) is a solution of an

ODE lying in the stable manifold of the point 0.)

-12-
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," 53. Weighted Resolvent Estimates for u - 2pu as U1J

We consider the scalar differential operator

Lqu uux - 2jux

and define

cLu e'CLoeCXu - U P (2i - 2c)ux - (2upc - c2)u

Observe that LI u uxx- P2u is formally self-adjoint. We are concerned

with the situation uz > c > 0, c fixed, U large. We seek norm estimates,

improving as p -o , for the operators (X-L)' and (d/dx)(G-LcL

on Lp and Cu, uniform for A in a fixed sector of C.

The following result suffices for our purposes. We define

S (") Ae C I Re(X-8) ) -(cos a) IA-BI

* . the sector with vertex 8 e IR and angle opening 2(7r- a) to the right.

Proposition 3.1: Fix BEtR and c > 0. For any 8 > 0, if U is

sufficiently large, there exists m < v/2 positive, depending on u, so

that

sup II(x),(A-L)' I < 8

for J - 0 and 1. The norm is the operator norm on LP (or Cu).

This proposition follows from estimates on the Green's function

for A-Lc , which is obtained by transforming through L. The resolvent

* equation for Lc is (A-Lc )u f. Now

(- Lc) e(P-c)x(A -L )e(cIu)x

-13-
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".,

.' so
so (X" LlelC'u)Xu "elC'xf"

We therefore obtain the solution formula,

(A- Lc)-If~ .W f j -l x-yI + (-c)(x-y) f(y) dy

where y(,) A , ;ey> 0. Thus we define

so (A-Lc)-If I (s). When fty > U-c, Kl(.,X) E L' and it may be

verified that the solution formula yields a bounded inverse for ALc

on LP, 1 p <w, on the domain

D(Lc) " If E LP I f  is absolutely continuous, f',f" e LP }!C

(similarly for Cu ). We omit the details, since a similar verifica-

tion is carried out in the next section for the operator wcL ;'. We

also find that

x

So-c ifesinin0

1(- ) ) ( t y+:2 -c) e(Y+ c)s ifs 0 0

-14-
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we have-. ( 1- tc)"'f . K %(.X)*f.

Using Young's inequality,, K*fp (IK fi p , we find
L LI LP

UILA21y1 f - (p-c) Sey + ( -c)
a n d dr y - W 0 y + ( -~

21yl ,ey- (p-C) * e + (w "

Proposition 3.2: Let y - A for A e C. Then if P > 2c,

a < w/2 may be chosen so that

(1) Iy - (i,-c)l C 3vI7 , if AeS(-P)
,' - fi-c)

(2) 1 y -(u-c)l c/4 , if , E S.(-uc)

I:: eIy (-c)(3) ic tan j(,r-m) 4 2 for A e S (-ia2 )
f~ey + (ia-c)

These estimates yield, for p > c, A E S(-uc),

x( -. 1 (37c" + 2)

2U' + *'' 17

H(Ac' L 2U1 +A'' (+" 12I 12)

Proposition 3.1 follows, for I2 + A (0 +ul) sin if A 6 So(),

so the bounds above tend to zero uniformly for A e S (0) as U

at the. rate j'.

'Si -15-
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*o,

iiii

:..,

/ S ( I + CU

,.Se < U -C l-

r/

._.U -CU U-C _-Cu

Figure 4. Action of the Map ) + X

Proof of Proposition 3.2: Figure 4 gives a "before and after" view

of the complex plane under the map A -I. VJ27r X.. Part (3) of the propo-

sition becomes obvious, and parts (1) and (2) are implied by the esti-
., mates

(a) sec e< 3/u and (b) > -c) + c/4

*.., Calculation of

Define

) ES (-cii)

-16-
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We introduce saw notation: Set 0 1 j-cu, z - -cos * i sins,

icucos a , s -sin a. For t > 0, A -uc+ tz lies on the boundary

of S,(-cii) and Y =4 = A .Bt We minlimize OSyct) - ~Sf4tz

'V. with respect to t. Now (tey)2 a Ji(p-'ct+n(t)), where n(t) " IO tzI.

One calculates n'(t) - (t-ik)/Io+tzI . Then

"] l2(Aey)(iy)' -I -ic+ - 0• n(t)

only when IO+tzko a t-Bk, or

K'(02" 20Kt + t2)  1:2 29kt + IOtK2

or, since we seek t f 0, t(l-w) " 21(I-Kt). Therefore, t 26c, whence

(), - ss2. so

sin a -

Now B * (U-c)2 + c(U-c). If U/c > 2, then c/Cu-c) < 1, and we have

> (U-C ( u ) . > (U-c) + •

Hence we may choose a < 7/2 depending on u so that

(sin O)(c- + > ( -+i)

Thus u > (-c) + c/4.

Estimate of sec 6

Define 6 by

I- (U-il
sec e max*-s.(-cu,) sta- (U-C)

-17-

.. .. . . .



l77

Claim: If w - /2, then seC 2 - l/c + 1. Define
:: ~ h(t) -I(t)-(l - I/O;tT - (W-c) I

g(t) - ey(t) (i-c)

where B " c2 -pci as above. We proceed to maximize h2(t)/g 2(t) with

respect to t. This quantity is a maximum when g2(h' - h2(g2)'. We

calculate (with n(t) a IBtil):

h2(t) - I+til - ? u.-c)aey + (u-c) 2

g2(t) - 11(0+n(t)) - 2(iu-c)d ey + (U-C)2

(ae) 2 ' a 2ey(ey), - J,(t)

(h2)' - n'(t) - 2(u-cn'(t)/4aey

(g2)' - Inl(t) - 2(.-c)n'(t)/4Ley

Thus h2/g2 is critical when

g'(2tey (u-c)) - h2(aey - (u-c)) " h2g

or
gltey h2 - g2

Thus
(aey)" - (u-c)ley - (n(t) - 0) ,

or

%(0+n(t)) - (u-c)aey - '(n(t) - B)

so 0 - (U-c)fIey. Therefore, u a ary at the critical point t. Squaring,

we have u? * ,(B n(t)), n(t) • 2102-0. Squaring again, B2 +t2 -
4 4u2B + 02, So t 2  4p2 (u2 -B) 4v'(Uc). Therefore, the only

-18-
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positive critical point for h2/g' is t = 2u,'/v. We calculate the value

of h2/g 2 at this point:

nC2pv - I/J2+4u'c 4i2[(-c)2 + 4VcJ u(p.c)

Since aey(2u*-€) i,, we have

h2 k(uc) - 2(u-c)u + (u-c)2

.2 it, uv S (u(p-c) + U(U+c)) - 2(u-c)u + (U-c)"

CU C+C2 1

ct c

At t O, h2/g2 * 1, and for large t, h'/g2 < 2. Therefore, the maximum

value of h2/g is U/c + 1, establishing our claim for a * w/2.

To complete estimate (a) for sec 0. fix U. and observe that

h2/g2(t,a), properly defined, is continuous in both variables so long

as w/2- i is so small that g > c/4. Therefore, if v/2- i is suffi-

ciently small (depending on u), then

MX (tQ) 9 9U/c

establishing (1) of Proposition 3.2.

14. The Resolvent Set for L u . Uxx + (tanh Isx)ux+ (Isech2'x)u

In this section we discuss the resolvent of LB on the weighted spaces

(LP)l and (C )' with weight Wc(x) - cosh cx. Equivalently, we study the
c u c

operator

c c

-19-
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on the spaces LP, 1 4 p < , and Cu. LB may be obtained by linearizingU
Burgers' equation u +uux a Ux about the traveling wave solution *(Ex)

1 - tanh h in traveling coordinates. Our present analysis may be

considered an extension of that of Sattinger (1976), whose results

apply to the formally self-adjoint operator L. Our result is that

if 0 < c < h, the spectrum of LB on the spaces LP and Cu consists of

a simple elgenvalue at the origin, a discrete set of elgenvalues in

the interval (-4,0), and a part contained in the parabolic region

CEg I eX -4-c(I-c) - Im X 2

Because of the next section, our results for c strictly less than

1/2 are required in the last section. In conjunction with Sattinger's

treatment of nonlinear stability, these results imply that the traveling

wave solution of Burgers' equation is stable to sufficiently small per-

turbations which decay exponentially as lxi 1 0, no matter what the

rate. A similar result might be obtained for other types of scalar

equations that Sattinger considers. For scalar conservation laws with

viscosity however, a more general result may be found in IW'in and

i':! "Oletntk (1960)).

Our proof uses the transformation to the self-adjoint form LB to

carry information about that well-studied operator (its Green's function,

the location and multiplicity of its elgenvalues) over to analyze theB B
non-self-adjoint Lc . Let us collect the facts we require about L

following the development of Sattinger for the most part.

A short calculation shows that

L u U - 4(1 - 2 sech2 x)u
)-x

-20-
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Lema 4.1: Define y(X) -* , aey ;P 0. If 0 P 0, the homogen-

eous equation (1- )u a 0 has a system of solutions ., *+, ., and

#+(x,X) with the following asymptotic properties:

* (±- ( +o1)), " ±YX(t 0(l)) as x

* @ * eYX(l +o(l)), *'- *YX(*Y+o(l)) as x. - .

These functions are single-valued analytic functions of X in the complex

plane cut from -- to -l along the real axis.

Proof: This is a standard result on the asymptotic behavior of

solutions to linear ODEs. To obtain #_, seek a solution of the form

**- e-. Then z must satisfy the equation z" - 2yz; + pz. 0,

where p(x) a Issech2isx. Assuming that z' * 0 and z. 1 as x -,

integrate to get

z'(x) f e2y(x's) pz(s) ds
x

I 02y(x-S)
*z_(x) f Y )pz_(s) ds

x

Choose xo so that

J p ds < '1l1

Then a bounded solution z_(x) may be obtained on the interval [xo,-)

through successive approximations. This solution does indeed satisfy

z. * 1, z: .0 as x i, ielding the desired behavior for f.

-21-.,% .. -
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To obtain f+,.set + z+eyx. Then we must have z' + 2yz4 + pz+

0. Set z+(xo) - 1, z+(xo) 0 0. Then, integrating,

z+(x) -j e"2Y(x s ) pz+(s) ds

Xe

z+(x) -pz+(s) ds

X e

*Our choice of x0 ensures that this last equation may be solved for a

bounded z+(x) by successive approximations on the interval [xo,-).

This solution has a nonzero limit as x * - so we normalize z+, making

Ais limit 1 and obtain with the desired asymptotic properties.

Because of symmetry, we may set *:(x)-4 (-x). Since z+ and

z.(x,y) are obtained by successive approximations, they are analytic

in y in the right half plane. They are therefore analytic functions

of A in the complex plane cut from -- to -A.

Each pair *,,+ or *.,*+ clearly forms a basis of solutions to

B
the homogeneous equation (L -A )u 0 0. Define the Wronskian

(it is independent of x). The homogeneous equation has a bounded solu-

tion precisely when either fy 0 or W(A) 0 0. If y - 0 (so X -

all solutions are bounded. If W(A) - 0 but Rey > 0, then i is a mul-

tiple of *+, which then spans the set of bounded solutions. Conversely,

i if Rey > 0 and W(A) 0 0, then any solution bounded as x . is a multiple

of , but -A. + BP+, where A 0 0. So no solution can remain bounded

-22-
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for all x.

Claim: The spectrum of LB on LP or Cu consists exactly of the zero

set of W(A) plus the interval (--J. Clearly, these points are eigen-

values for LB on the space Cu. If W(A) - 0 and Rey > 0, then the etgen-

function .(x,A) is in LP for all p ;P 1. If ley - O, then all solutions

of the homogeneous equation oscillate, and 0. is bounded but not in LP.

It is then easy to verify that A is in the approximate point spectrum

of LB on LP, 1 < p < -. (Consider the sequence un - J(x/n)f_(x), wherein

j(x) 0 0 for lxl ; 1, J(x) 1 for Ixl k's, and j is smooth.) It will

follow from our analysis of the resolvent of L below that X is in the

resolvent set for L; when Rey > 0 and W(X) 0 0.

Lenma 4.2: Let X be a zero of W(A) in the complex plane cut from

-a to -4 along the real axis. Then (a) A is real and Isolated, and

(b) X - 0.

Proof: (a) *.(x,A) decays exponentially as x . -, so defining

(uv) f u(x) VW(x) dx

we have

so that A X 3. W(A) is analytic and not identically zero in g\(.w,-3],

so has isolated zeros.

(b) The function *.(x,O) * Isech jx is positive. (L kills a

positive function because it came from linearization about a monotone

4 traveling wave.) If W(A) * 0 for some A > 0, define

-23-



u(x) = *(xX)/-(x,O)

Then since y(x) > y(O), u(x) -~0 as x -+ ~ Also, u satisfies the

equation

( +tanh x + 2 1u - Au =0

By the maximum principle, it follows that u a 0, for u cannot have a

positive maximum (at which u <~ 0, u ,u> ) o angtv

minimum. (This argument applies to both real and imaginary parts if u

is not real.) This contradicts the fact u 0. So W(A) 0 0 for A > 0.

We turn now to construct a resolvent formula for L c. Assume that

Stey >0 and W(A) 0. The Green's function 'for X- 8 L is

I *() +(x,X) *(y,X) for x <y

W(~)~(x, ) ip(y,X) for x > y

The resolvent formula for LBis

(X-L )y'f(x) = f K%(x,y,X) f (y) dy

Now formal ly,

This yields the resolvent formula

-24-



B- If (xYX -~)d

B hE

where

(-i Cos' cx rcsh c f

K (x yxA) c . - osh for x > y
, ~COSh " *+(Y) COSh fo x>

B
The essential step in proving that ) is in the resolvent set for L

on LP is to prove that the resolvent formula above yields a bounded

operator on LP. Here is a sufficient condition that an integral

operator be bounded on LP:

Lem 4.3: Let K(x,y) be measurable, with IIK(x,-)U - C,
LI

independent of x, and HK(,y)IIL1  c C2 independent of y. Then the

map U

f .. f K(xy) f(y) dy

is bounded on L., 1 4 p <-, with norm at most C11  2

Proof: Using Jensen's Inequality and Fubini's theorem, we find

4 f K(x,y)f(y) dy j dx

f f f (y) P .K(xy) dy K(x,s) ds) dx

: cPlf If(yIIPf IK(x,y)l dx dy C I C211filp

I. ,

-25-
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The following estimate is therefore our main tool for describing the

resolvent of L :

Proposition 4.4: Assume 0 < c < Is, gRe, > '-c and W(X) f 0.

Then (a) IKc(x,.,)lI C(A) independent of x, and

(b) IIKc(.,y,)II (C(X) independent of y.

Proof: (a) Assume x > 0 (the estimate for x < 0 is entirely

similar). We estimate the integral

f IK (x.y.X)I dy

separately on the three intervals (-.,0J, [O,x), and [x,a). On the

half line y-4 0, and for x > 0, we have the estimates

cosh ( clX) ( e  " (-C))y * (3.1)

10-(x) cosh cx C2(X) e-(f y + (N-c))x • C2 () (3.2)
:;:.: cosh x•

Then, since x > 0, these estimates imply

0

f IKc(x.y.X)I dy • C2

-W(X)I x e - ( -c)

Now is a linear combination of . and *+. So for y > 0, we estimate

-.+(y) cosh y • C3() e (Rey + ( " c))y (3.3)

Together with the estimate (3.2), this yields

-26-
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x
f IKc(xsytX)I dy CCS " 1

0 IW(A) RO Y + (1-c)

Finally, on the half line y > 0, for x > 0 we estimate

IY,.) Cos C C4 M ,() -(8e is - O)y (3.4)

'.,+(x) co Cs(X) eo(Rey - -))x(35)Voh1

which yields our last estimate,
'Sm

f IKC(xgy.X)l dy - C"C .
M0Iw()l ey - (- c)

(b) We do the estimate for

Sf IKC(x.y.x)l dx
: -a

similarly. Assume that y > 0. Then for x < 0, we estimate

+, cosh x I C,(A) .-
(3.6)

Together with (3.4), we get (since y ; 0)

r 0

f IKXc(Xy,.)l dx C c4c,

,1 lW(A) I ey - ( -c)

The estimates (3.4) and (3.5) yield

y IKc(xgytx)1 dx c . 1
0 Iw(l I a -) (-c)

-27-
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Finally, (3.2) and (3.3) imply thatiOD
f IKc(x,y,A)l dx < C2C3

y W(A)I Rey + ( -C)

The estimate for y < 0 is similar.

Remark: Suppose that 0 < c < . Then teATV > -c if and only

if

IeX > -c1 -c) (I- )2

We include the simple proof: 6te/ > a > 0 when 2(ReV'i)2  R E~e z + IzI

"2 2a 2 . Then
(Ie z)2 + (IM z)2 > 12a 2 - de z) 2

so (Im z)2 > 4a4 - 4a26te z , and

ez >&

Now take z = +;, a I -c.

This essentially completes the determination 'of the resolvent set

for . To complete the formal proof that X is in the resolvent set

when Rey > -c and Wi() # 0, we need to verify that the (bounded)

integral operator with kernel Kc (x,y,)) actually yields the inverse

of A-L c on a suitable domain. This verification is straightforward;
C

we include it for completeness.

The domain of LB on LP is the set of C functions u with absolutely

continuous first derivative such that u, u', and u" are in LP. (On Cu,

require u', u" in Cu*) Given f in LP , define

-28-
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Gf (x) f Kc(x.y.X) f (y) dy

To show that G is a right inverse for X- LB i,we must show that u* Gf
BBis in the doma-in of Lc and that (X- L c)u mf. We my write

x a

WM 1 u(X) M *,(x)f. 1 f7(y) dy + #_ (x) f(y) dy

-m x

Clearly u(x) is absolutely continuous, so may be differentiated almost

everywhere. We calculate

WM) (na U)'(x) a *(x)f f f(y) dy + *(x)f i f (y) dy

-m x

a.e. Now it is clear that u' is absolutely continuous. One may verify

that ut is in LP using the proof of Proposition* 3.4, for *+, and *'have

the same asymptotic properties as andand

Differentiating again, we find

x

WM uI~x -WP)fX ) I fW *"(x)fo-. f (Y) Oy

+ *(x) f *+ fi (y) dy a.e.

x

Since *and *14 are eigenfunctions of 1B we get

B~ w

L :h u Nwf a.e.

-29-



Therefore (A-L )u f a.e.,,hence in LP. This implies that u is in

the domain of L . So G is a right inverse for A- Lc on LP.

B
To show G is a left inverse for A- Lc on its domain, it suffices

'. to show that X-iLB is one to one. (For then if u is in the domain, and

f = (,-LB)u, we have (X-L)(Gf-u) 0 0, so Gf - u.) But if A--LB

is not one to one, there exists v in its domain with (X-L )v a 0.
C

Then v" is absolutely continuous, so v is in C2 and LP. Since A is

not an eigenvalue and ey > h-c, one may show that v must be zero.

Remark: In the discussion above we needed to know that if A is in

the resolvent set for Lc, then (d/dx)(.- LB)-1 is a bounded operator

on LP. This is actually quite a general fact for the second order systems

considered in Sattinger (1976). Also, in our treatment we did not follow

Sattinger in pursuing resolvent estimatc, dsyaptotically for large

JXJ. Estimates such as he requires (see Sattinger (1976), Lemma

3.411)) are automatically valid for the class of second order (matrix)

differential operators he considers. We defer a discussion of these

issues to the Appendix.

Only one fact remains to be proved in this section:

Proposition 4.5: For 0 < c <i, the elgenvalue 0 is a simple

eigenvalue for L. on LP (and C U).

Proof: We must show that the associated projection operator on LP,

~c cT(~4 r
r

-30-
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Is one-dimensional. (Here r is a smooth closed curve in the region

.ey > -c enclosing the origin.)

First, observe that the kernel of L is one-dimensional. (If
L B u - 0, where u is in the domain of L B, then u" is absolutely continu-

c C,

ous, so u is in C2 and LP, hence is a multiple of #_.) We claim that

the quasinilpotent Dc associated with the elgenvalue zero,

D LBP fc - LB) dC
r

is actually zero. This suffices to show that Pc has one dimensional

range.

We argue as follows: First consider the case c a Is on the Hilbert

space L2. The operator L is then actually self-adjoint, and one

obtains D Is 0 on L2 (we cite Kato (1976), V.3.5-6). But then we

may write

ww

Dcf(X, f fC K(x., . C) ) fy) dy d0

D° i i  w * .(x) fr fi(x,,): !If(y)dyr * 0 .
w i r _ w c

for any f in CO(R). But Dc is bounded on LP, so Dc 0 0. Therefore,

*the eigenvalue 0 is simple.

-31-
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0.. -. Weighted Estimates of the Shock Profile

The k-shock profile (f1;c) obtained from Foy (1964) when Xk(U) Is

gonuinely nonlinear is : .. ton of the equation

" f()- o

(Here s - )k(UR) + cand, for convenience, UR - 0 - f(uR).) For each
.4

E, O* ;c) is in the stable manifold at 0 for this eqation. We need

the following estimate, for the 1-shock profile in particular):(see the

end of §2)

Proposition: Fix c < k positive. Then there exists a constant K,

such that if E is sufficiently small,

sup I*(&;E){ < eke cc

Proof: From Foy's proof, *(&;;) = C(hC&;c), where

*(x;E) - (I1 - tanh x)rk(O) + c,(x;e)

and
sup l*(x;e)l C c

x

(independent of c). go satisfies the equation

- AC* + FE(p) (5.1)

where

F£(,) 3 f(ke:) - df(O) c,

and

-

": -32-
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diag I(A,(0)-sWISC. 1 9...

Then A. .- and 0 F* () -) " dFc(O). Also, dFc) "-" d.-. - "

Our proof follows a standard proof of the existence of the stable

manifold based on solving an integral equation by successive approxima-

tions (Coddington and Levinson (1955). p. 330).

In block form, write

A ( :) () , o(r) 0)
0' A0 0 0 eT

where A' is diagonal with negative eigenvalues, A2 is diagonal with posi-

tive eigenvalues. Choose c < h positive. Then if C is small enough,

there is a a > 0 so that

IuCT)I C -(2c+a)T for T ;o

IU.(T) < *ar for T < 0

Fixing a e 3, we consider the Integral equation

T

O(Ta) - U,(-T)a + f U(T-s)FC(e(sa)) ds

T

- f U,(T-s) FC(e(sa)) ds . (5.2)

The following Lipschitz estimate holds for Fc: If 1e,0lle2l < 6, then

IFc(8e)-Fc(e)l - sup jdF(e)j 1e,-021 1 m6le,-e 2 l

where M is a bound for d2f in a neighborhood of 0.
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Therefore, restrict 6 and a so that 21al < 6 and 146(1/a + l/(2c+a))

< We solve Eq. (5.2) by successive approximations: set 0O(r~a) 0.

Then O'(-r,a) *Ul(-r- T)a, and

By induction, we show that

19 ~(T~a) - 1L < jal e2(T) 2

* Indeed,

T
1e~ (') fj(c~)T-)(mla -c~-) 2Lm)d

T

+ ~2 -f* 2c s-T ds))

14ii2c(TT) (I+ 1 ~

Saie-2c(T-T)-2-L

Therefore et converges uniformly to O(T,a) with

Ie( ,a)I 21ateCtT for T ~ T .(5.3)

This 0 is a solution of (5.1) and O(T,a) has a special form: ej(T~a)

-34-
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aj if J 4( k. What is more, O(r,a) is the unique solution of (5.1)

with o (T) - aj for J 4 k so e b 0 as (here we apply the stable

manifold theorem). What we have shown is that the size of the neigh-

borhood in the proof of the stable manifold theorem on which the esti-

mate (5.3) holds does not shrink to zero as c * 0. Instead, this esti-

mate holds whenever

Now *(T;E) * (1 - tanh '/2)rk + crlT;c), where ItI ( C independent of c.

Thus if cc is sufficiently small, say cg < 6/4C, then there exists a

fixed T so that

I*(T;C)I < 6/2 for all c < co

Since *(T) * 0 as T . w, this implies that *(T) = e(T,*(T)) by the

stable manifold theorem (for c fixed). Therefore,

j4(;c)j (6e2cT) e"2c for all c < cg and T > T

Since *(T;c) is bounded, there exists K such that

SI*rc)l < Ke2 c T  for all C < co and T real.

§6. The Resolvent Equation for I'

c

We proceed to complete the proof of Theorem 2.1 by showing that if

0 0 lies exterior to a suitable sector strictly contained in the left

half plane, then A is in the resolvent set forZ c ; i.e., the solution
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operator to the resolvent equation (Z"- X)u =f is a bounded operator

on (LP)m (or (Cu)m). We introduce some convenient notation for the

components of 1' in block form (see §2):
CC

L' w Ow' NI w MleXC c C C C

ect-l -cx- cx
Nc e Cc

Also set

LB = wLBw1' R z' W[~;Z1
C C C c IcZ~

=e-CX LT ecxA i -e-cx[(B +E CxilX

Then

Nc c C

The operators R1, PC and R~ are first order differential operators

with smooth, uniformly bounded coefficients as c -1 0. Provided c .

the same is true for N' because of the result of the previous section:
C

sup I*(x;c) e 2cx -Q K independent of c
x

* Consider the resolvent equation, for X e t f 7E (LP)m or (Cu )m

0 0*

Fix ~~ B wih +8 ~-)ac,0 cR A N'2s htte nypiti

C- 3b-
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S (-B) (see .93) in the spectrum of Lc is the point X 0. Choose r,

0 < r < 0, and delete from the right-facing sector S(-0) the disk of

radius r centered at the origin, obtaining a region

P Sl(-B) \XA I IXI- r (see Fig. 5)

Claim: If c is sufficiently small, a < w/2 may be chosen (depending

on c) so that % is contained in the resolvent set ofJc
Proof: (1) There exists C1 so that IIRc(LB - A)' 11< C1 for all"c C

in Pa" (For this we require some asymptotic control on I(LB -) "s1 and

11i(d/dx)(LB_ A )-i as IAX J - in S (B) . The necessary estimates, proved

in detail on Cu, are found in the Appendix.)

(2) For c <l/2C1 , the operator

L B R - A I + cRc(L - A) -'] (LBA)

is invertible for all A in Pa, with norm

H (L' - A)- 11 4 211 (LB - A Y 1,)

(3) For X in P and E < l/2C, we may eliminate c from the resol-

vent equation, obtaining

L1 -A NI ( (

0 (1 +Q(L T_ )'Z)(L T_ X) (L I NcL X)'l

where Q C " Nc(Lc " A N'

c c c

(4) There exists C2 so that for all A in Pa

-37-



IIc(L'-X)'nll " C2c c

(5) Apply Proposition 3.1 for each component of Lc  There exists

co > 0 so that if E < co, we may find a < w/2 so that if X E %, then

I T N (LT - 1_ 1/4C2

and T 1/2
tlQ(L -)'t l/ .

Therefore, we may immediately solve for i, obtaining the estimate
Uill ( 21 (LT -A)'li (11711 + A 2I)f1I)T _ 1 ( 1 illlC 1 f 1

Then z' is determined by

z' (L -X)'(fl - Nli)c c

and since
(Lc - X)TiB(T - (Q- X)'fl)

where B a 0+ Q(L_, so IIBII • 2, we find (using (5) to estimate

N1i) thatc

1zI ll • 211 (L )- ' II (nf + * (ntll + cR 2lf'll))

This establishes the claim above, showing the P is in the resolvent
set of '.

To complete the proof of Theorem 2.1, it remains only to show that

inside the disk J•J ( r, the spectrum of t' consists solely of a simple

eigenvalue at the origin. Consider two projections PO and P defined

on (LP)m or (C )0 by
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PC.Zwif(C-ig')_ dC P

in block form, where

52,ri

'B c

r

Here the integration is taken in the positive sense around a circle r

centered at the origin with radius r, r <r 0 . From the theory for

LB in 14, PO is a one-dimensional projection.
C

Claim: If , is sufficiently small, then 1lP -PO11< 1.

This implies that PE is one dimensional. Butt', hence ic, has

an eigenvalue at 0, since £ '* - 0. The point zero is therefore the

only point inside the circle of radius r in the spectrum oft'.c-
The proof of this claim is straightforward, using the resolvent

estimates we have developed. For A on r, f in (LP)m , let

Z (ic - f'zB - (LBm X)-fl

Then it suffices to show that given 6 > 0, then for e sufficiently small,

Zull < 611fll and liz' - zB 1 < 611 f11

for all X on r. The first inequality is clearly guaranteed by our pre-

vious estimate for i and the resolvent estimates for Lc (Proposition

Ki 3.1). For the second, consider z' in more detail:

*, -39-
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z +c (L-)'

[fi~~ _ X)(L-A)B(f

[f' N'L&CL-X)'

By Proposition 3.1, we can make 1IN1(L1-,'II as small as we like by

choosing c sufficiently small, and we can also achieve

II[ +R - ill < h6

from which we may extract the second estimate. So the claim holds, com-

pleting the proof of Theorem 2.1.

M r,

i:: ///

Figure 5. The Set P
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APPENDIX:

RESOLVENT ESTIMATES IN WEIGHTED NORM

FOR CERTAIN PARABOLIC SYSTEMS

Here we develop an abstract treatment of some resolvent estimates

which were required in the theory of asymptotic orbital stability of

traveling waves developed by Sattinger (1976). For the class of opera-

tors and spaces with scalar weights considered by Sattinger, we show

that the asymptotic estimates he required hold automatically, so need not be

separately checked. Similar estimates are commonly developed for para-

bolic operators in unweighted spaces in the theory of fractional powers

of sectorial operators, which are generators of analytic semigroups (a

good reference is Henry, 1981). Our treatment is self-contained, and

*proceeds in the spirit of perturbation theory for operators generating

quasi-bounded semigroups. At the end of this section we prove a result

involving matrix weights, validating the estimates for our operator t'

on the spaces (C )m considered in the main body of this paper.u c
Let us describe the estimates involved. Consider an operator

Lu a Puxx + M(x)ux + N(x)u

where u(x) e lRm, P is a positive definite matrix, diagonal for simplicity,

and M(x) and N(x) are bounded uniformly continuous matrix-valued func-

tions. Let w(x) be a given scalar weight function. L will be considered

as an operator on the weighted space

* Sw " u: R * Pm I w(x)u(x) is bounded and uniformly continuous ,

-41-
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.4%

with domain

D(L) "u E Bw I u x and uxx are in Bw

The space B. is equipped with the norm

Huw - max sup Iw(x) u (x)l
i x

We also define a norm

uIiw, 1 - Ilulw + Nuxllw

The weight function w(x) should satisfy

(1) w(x) > I for all x;

(ii) sup 11 - w(x+t)/w(x)l 0 as t 0
x

In Sattinger's framework, L was obtained by linearizing about a given

traveling wave of a nonlinear parabolic system. Condition (I) above

is explicit, and (ii) implicit, in Sattinger's analysis. Condition

(ii) ensures that the shift u(x) o u(x+t) is a bounded operator on B.,

continuous in t, and implies that w(x) Is continuous and grows only

expoPentially as jxj -. The use of spaces of uniformly continuous

functions is also implicit in Sattinger's work.

The second proposition below contains the estimate Sattinger

requires in his Lemma 3.4 and Theorem 4.1. The first proposition simply

states that -L is a sectorial operator in the sense of Henry (1981) or

m-sectorial in the sense of Kato (1976).

Proposition .: The operator L on Bw with domain D(L) is a closed,
densely defined operator. For some x,B real, with 0 < a < v/2, the

• " sector
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s " e £ j Re(A-) -cos oIx- ol

is in the resolvent set of L, and for any such sector S

I- (Ak - L )" f 11 w 4 coop 11 fll w ( A.1 )

for all A ES, f E BW.

Proposition A.2: For any A in the resolvent set of L, dx0 (X-L)'
is a bounded operator on BW, and for any sector S1 contained in the

resolvent set of L,
11I (A - L)"fl 11 ' 4 ( HIlw (A.2)

for all Ae SoS, fE BW.

Our approach to the proofs will be as follows: First we verify

(A.1) for the scalar operator u . uxx; then (A.1) is valid for the

diagonal operator u-* PUxx. We then establish the result for L by

treating the lower order terms by perturbation arguments. The same

procedure is used for Proposition A.2.

Our analysis begins with a study of the translation group U(t)

acting on Bw by

(U(t)u)(x) - u(x+t)

Lemma A.3: U(t) is a strongly continuous, quasi-bounded group,

meaning that for some constants M and b,

I HU Mufl w - eblte u (A.3)

-43-
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The infinitesimal generator of U(t) is the operator

Du = ux ,

with domain

D(D) = u Ew I Ux u Bw

The resolvent set of D includes the set of X 6 C with 6IteXI > b, and

for such X we have the estimate

1 (-D)'uH M 1ull (A.4)II (X-D)'Zu w <  eXI - b

In order to carry out the proof, we first estimate the weight:

Claim: There exist constants M and b such that

sup w(x+t)/w(x) < Meb1t  for all t (A.5)

Proof: Using property (ii) satisfied by w(x), we may find e > 0

and B • 0 so that

sup sup w(x+t)/w(x) e ebc . (A.6)

Itl-c x

Given any real t, we may write t nc+ , where n is an integer and

IIi < c. Since w(x+je)/w(x+ (1 - 1)c) < ebe for any J, we obtain

'-,w(x + tI/w(x) -4 (e beI) nl e be Me bltl

b2b"

where M =e So the claim (A.5) is established.

Proof of Lemma A.3: The claim above implies the estimate (A.3).

For u • Bw , let us verify strong continuity:
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sup lw(x)(u(x+ t)- u(x))l
x

.c sup l(w(x)-w(x+t)) u(x+t)l + sup lw(x+t) u(x+t) - w(x)u(x)l
x x

The second term tends to zero as t -0 because wu(x) is uniformly con-

tinuous, and the first term tends to zero because wu(x+t) is bounded

and

sup I w(x)/w(x +t)I * 0 as t " 0

x

Consider the operator Du u x . It is not hard to show that D(D)

is dense in B We claim that, if fteX > b, then X-D is invertible,

with

(X- D)f f e-AJ(t) f dt , fE B . (A.7)

0

" Indeed, letting v denote the right-hand side, we have

1 v11 f e'RelMe bt dt lftl M lfilW

0

Also,

V(X) f f e' tf(x+t) dt e e x f e" t f(t) dt

0 x

so v is differentiable and Xv-v x a f, so v is in the domain of D.

Therefore X-D is invertible on Bw and (A.7) holds.

When ReX < -b, a similar analysis holds with (A.7) replaced by

SD)'f a f e U(t) f dt (A.8)

0
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The identities (A.7) and (A.8) imply that D is the infinitesimal genera-

tor of the group U(t), but we will not use this fact. Refer to Kato

(1976) for the details.

Proof of Proposition A.1 for D2: The domain of the operator D2

is

D(D2 ) IueBw I ux and uxx are In B

Consider the resolvent equation for DI:

D) f

Write A y2 , Eley >' 0. Then A-D2 - (y-D)(y+D), and if f(ey > b, then
4

±y is in the resolvent set of D, so

Au (A-D()'f . +D)'(ly'Dl'f

and

Run C M2 fi
(Sey- b)2  w

So the resolvent set of D2 includes the region 8e,T > b, which is "exterior"

to the parabola dteA a b. This region contains a sector Sao, where

B > b2, 0 < a < r/2. Let SOLO now denote any sector in the resolvent

set of D2, with 0 < a < w/2. We seek to show (A.) holds. The resol-

vent is uniformly bounded in any compact subset of S,, so we need only

verify (A.) for IAI sufficiently large. It suffices to prove the follow-

ing:

Claim: There exist constants C and c so that if A SaoB and

4 I ) C, then

-46-
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For the proof, first choose &, 0 < < a and pick C > 2101 so large
that i f X- S B and JI > C, then XE S&O , i.e., arg X 4 -& . Since

the set dteA - 2b is a parabola, we may inflate C so that if X E S L

and JI > C, then ReA > 2b. We also have arg A (w-i)/2, so it

follows that (ReA - b)/1 Il has a positive infimum cl for X E S06 ,

>I > C. Then

(ReA- b)2 ' cIlAl

and since C > 21B1, JI) > c3)-B1 for J)A > C, cs >0 , and the claim

follows. Hence Proposition A.1 is established for the operator D2.

Now Proposition A.1 is valid for pD2, p > 0, by a simple scaling

argument. We may separately analyze each component of the resolvent

equation for PD2,

(A-PD 2)U - f

where P is a positive definite diagonal matrix, and find that Proposition

A.1 is valid for this operator as well.

Our treatment of the lower order terms of L is based on the notion

of relative boundedness of closed operators, and on a Landau-Kolmogorov

inequality for generators of bounded semigroups (a recent reference is

Chernoff, 1979).

Definition (cf. Kato, 1976): Let A and B be operators on a Banach

space, with D(B) D D(A). B is said to be A-bounded with bound c, if

for any c > co, there exists C so that for all v 6 D(A),

IIBvI 4 Cilvil + cliAvil
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Lemma A.4: Let M and b be given from Lemmna A.3. Then for any

)2 11+(E I) ll

it(D -b)u 11 -4 !II(D-b2I Ml hl for all ,> 0 (A.9)

11 (D -b)u 112  Coll1(D -b )2U11 ,~Hull for some constant Cc (A.10)w

Corollary: D is D -bounded with bound 0 on B.

Proof: For X >0,

-1( (D -b))1  M/

For u E D(D 2), we may write

(X +D -b) u (A-( )-(2-( )2

so

11 (D - b) uh 11 4 II ull + .M ( 2 11ul, + 11 (D -b )2Ui11

yielding (A.9). Put X) (II (D-b)i WllulIw) to obtain (A.10). For the

corollary argue as follows: D is (D-b)-bounded, since

luhw (f(~~iw * fw

By (A.9), (D-b) is (D-b )2 -bounded with bound 0. Finally, (D-b )2 is

D D2-bounded, for

11I(D b)<u11 ID2u 11 w + 2bl (DbuN + w l~ w

11 fD~I 11 2b(cIl (D -b )2U 11 + C(C)hluhlw + b2hllw

Taking c sufficiently small, we find
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1 f(D-b) 2u11 • clID 2ul + Cllull . (A.1l)

Then D is clearly D2-bounded with bound 0.

Proof of Proposition A.l: Let Lu - Puxx + M(X)ux +N(x)u, and

let Lou - PUxx, Bu - M(X)U x+N(x)u. Since M(x) and N(x) are bounded

matrices, B is D-bounded, i.e.,

IlBull Cxll1Iw + a1uIl w  for u E D(D)

Applying the previous corollary, B is D2-bou,,ded with bound 0, hence

L-bounded with bound 0. But then La is L-bounded, for

1 +L u 1 i Lull IIBull • IlLull + ellLoull + C(C)llull

and if c 1 we obtain IlLoull -4 cllLul + CIlullw  Hence B is L-bounded

with bound 0.

Fix a sector S with 0 < a < w/2. If A 6S and JI is suffi-

ciently large, A-Lo is invertible and (A.1) holds for La. Rewrite (A.)

in the equivalent form,

Ilull C II( - L)ul w for u • D(L) (A.12)Ix-8tw

We claim that (A.12) holds for A in Sa if JIl is sufficiently large:

For u • D(L),

I(A-Lo)u 1w 1 I(A-L)u lw +I IBul w I 1I(A -L)ull1 + eIILullw + C()Illullw

o (1+ ) II(A-L)ull w  + (XlC + C(c)) hu w

Now (A.12) holds for Lo for some constant C Fix c < 1/4C Then
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if 1XI is sufficiently large,

C

and we have

for IXI sufficiently large, yielding (A.12). So Proposition A.1 is

established.

Proof of Proposition A.2: Define the operators 1, Lo,, and B as

above. Let us show that if A~ is in the resolvent set of L, then

D(X- L) is a bounded operator on Bw. Observe that since D is D2-

bounded with bound 0, and Lo is L-bounded, it follows that D is L-

-. bounded with bound 0. Then, since range (A-L)1 z D(L) C D(D), we

have, for any f C w

11D( -L)-'fi 11 cliL(X-1Y-'fii + C11(X -LY'f 1w w w

'4 cIl fiI + (c X + C) 11(A -L)1 i

Let us now assume that (A.2) holds for the operator Lo for 1XI suffi-

ciently large, X in any given sector S,,0 < ca <n/2, and show that

it holds for L if j)I is sufficiently large. Rewrite (M~) in the

equivalent form,

ICBi

11 ll+ 1 Dll X L~-50-A13



for u E D(L), X E Sao, JAI sufficiently large. Now

II (X - Lo)u11 4 II (X-L)ull + IBull

4 II(,-L)ulI + C(IIuli + IIDulI)

Since (A.13) is assumed to hold for La, we therefore have

(lull w  + IDuW  1 11 (X - L)ull1
W \..- 17 Ix.BI W

Therefore, If JAI is sufficiently large, (A.13) holds for L as well,

perhaps with a larger constant C'

The last step in our proof is to establish (A.13) for the operator

D2. By considering each component separately, it will follow immediately

that (A.13) is valid for the diagonal operator La. Our approach is

use the Landau-Kolmogorov inequality (A.1O), along with the sectorial

estimate (A.12) for D
2.

Fix any sector S B* Then for A in this sector, IAI sufficiently

large, X-D2 is invertible and (A.12) holds. Recall from (A.11) that

(D-b)2 is D2-bounded. Using (A.1O), we find that for u E D(D2 ),

11 (D - b)u 11, ' coI u~l(cl Du + Ci ull )
w w w w

Now PD 2u~lw II(A-D w 21 + IXJlull , so, estimating IullI via (A.12),

we obtain

I()-bul)uIw c + (clxI +C) IA -$i (x-D2 uD (

Therefore, for JI sufficiently-large,
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1(D-bu1 4 Cas 11 (A - D 2)U I11 (A. 14)
I( - ulw  w ' 1

Now D is (D-b)-bounded, and we have

Ilullw + IDull w 4 II(D-b)ullw + (b+l) llullw

Using (A.14) and (A.12), we obtain (A.13) for D2 for all A E S with

I)X sufficiently large. This concludes the proof of Propositiol A.2.

We conclude this section with some brief remarks about matrix-

valued weight functions which show that our operator V of (1.6) satis-

fies the estimates (A.) and (A.2), at least on the spaces (Cu )m

for c sufficiently small. Consider a smooth matrix function W(x) which

is diagonal for all x for simplicity, with Wi(x) > 0 for each i.

Define the weighted space

BW - I u: R - Rm I Wu(x) is bounded and uniformly continuous ,

with norm

li ull W max sup JWii(x) ui(x)I
i x

For example, if WNI(x) = cosh cx and Wi .(x) = e-cx for j > 1, then

Bw - (Cu)m . The theory of this appendix does not apply in BW; e.g.,

multiplication by a constant, nondiagonal matrix M need not be a bounded

operator in B . However, in special circumstances the estimates (A.)

and (A.2) may hold if the weight W(x) may be used to define a similarity

transformation which takes the operator under consideration to a "nice"
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operator acting on the unweighted space (C )M.l
U

Let L be an operator on B

Lu *Pu~ +t4(x)u + N(x)uxx x

where P is a positive definite diagonal matrix, and M and N are smooth

bounded matrix-valued functions. Define an operator on (C~ )m by

L v *WLW' v =Pv~ +R Wv~ + A(xV

Now M(x) and N(x), in general, are not bounde' functions of x, but suppose

they are. (This is the case of interest in this paper, where Lw corresponds

toi , cf. (2.4).) Then the results of this appendix apply for Lw

on the space (C u)m, yielding (A.1) and (A.2) for L W. Consider the

equivalent formulations(A.12) and (A.13). Then (A.12) holds immnediately

for L on B:Given any u S D(L), then v Wu is in D(Lw), an

C C

To vrify(A.1), oservatha

WDu -Dv - WW'vx

Require that sup IW XW1(x)I ( C < (This is valid for the weights we
x

have used in this paper.) Then

C, (1+ C)
liuIIW + IIDulli 0~ (+C) ii v f + 11iDvift - 0 11 (X-L W v ii

I X -- oil
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Supplement: Marginal Stability on Unweighted Spaces

Here we show, using Theorem 1.1, that the linearized operator £' for

the weak I-shock profile has no unstable eigenvalues. More precisely and more

generally:

Theorem For C > 0 sufficiently small, the resolvent set of V on the

unweighted space (Cu)m (also (LP)m ) includes all crmplex I exterior to the

sector Sl0/4 c2O) of Theorem 1.1 and exterior to some parabolic region P'

{AIReX 4 -C(Im 1) 2 which lies in the left half plane but includes the

origin.

For the proof, it is enough to show that V' has no eigenvalues in the

region described. This is due to a characterization of the essential spectrum

• (spectrum aside from isolated points of finite multiplicity) that may be found

• in Henry (1981): Let A+ - df(u) s, df(u) -s, and form the sets
+R -L

si e l( e det(-T 2  iT A * ) - 0 for some real Ti}

Then S+ U S_ is contained in the essential spectrum, but the connected

component of 4\(S+ U B5) which is unbounded to the right is devoid of

essential spectrum. Note that here, any A e S* is of the form

2
Re -- T , imn T (A(u )-s) for some j-1,...m,

jR,L
2

so S+ U S is contained in a parabolic region {A e miRe < -C(Im A) for

some C > 0. Now suppose A e \ (Sal/C 2 0 ) UP ) and X is an

eigenvalue, so (.'-A) 1 - 0 for some function T(x) in Dom(P). (Therefore

" is bounded and smooth.) It will be convenient not to scale the

independent variable, so for 0 4 c < 1/2, we let

c W W Vv- c :c, Vx cx/2'" c c Lc ' c [0Ieo

1i We claim that W Y is bounded, so that Ais an eigenvalue of C'

contradicting Theorem 1.1.
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Step 1. we claim Ie"€Cx/2 Y (x)l < const, x 4 0. We apply standard

theorems on asymptotic behavior of solutions of linear OD~s (Coddington and

Levinson 1955). As x I -, Y is asymptotic to a solution of Uxx- A. -

O x) e-Xl+o(), and T'x) - ,e.eXl(+oIll))

where dot (P2 P A ) 0 and Re V )0 . In this case, Vi is of the

form 2P - IL(uLl-S) + A(uL)-a)2+ for some J. For A "exterior"
i% _sz. )/2-,soR oXN)-. Rcl

ito s_, we have Roll. (U)B)+A > A luL)-S I0 R _ lULl-. Rcl

2
that a- llUR) +/ 2 e, Vl~r (u) 1, and = u + Cr + 0(C), so

that sR 1I R L R 1s
Re _ )1/2 6 - 0(c2). For e small, we then must have Re I_ - cc/2 ) 0,

so the claim holds.

Step 2 We claim ,e¢cX/2 YI < const, x • 0. A different argument is needed

here. In block form, Y - CY 1), and

1 1 1" -ccx/2".

IL-A)[cosh ecx/2 1 I I-= -J.

The right side is bounded, from step 1. By the construction of the resolvent

of 1' in * 6, A is in the resolvent set of L1 if A 0 0 is exterior to
c c2 14)"I

S- 0/4). Therefore we may find * in DomCL 1 so bounded, with

1- 1,e-ecx/2;,
(CA)*--M ce ]

Hence

L A)[Y1 -sech ccx/2 0] = 0

The expression in brackets is bounded, so has asymptotic behavior

0 +X(l+o(ll) as x * 4., where (since A CuRI-S - -C/2)
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2
P.+ +Ii 4 . /2- X=O, Rep + ( 0,

- - (( 2+.X 1/2
s0o I 4 * Since A is exterior to +

Rep+.~ C - so ReU4. + CC/2 < 0, and the claim follows.

S.2
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ABSTRACT (Continued)

in components transverse to the profile, where, for an extreme shock, the

linearized equation in dominated by unidirectional convection.


